

Ospedale
Sacro Cuore - Don Calabria
Negrar (Verona)

INCONTRI DI AGGIORNAMENTO DEL DIPARTIMENTO ONCOLOGICO TRATTAMENTO del NSCLC IV STADIO

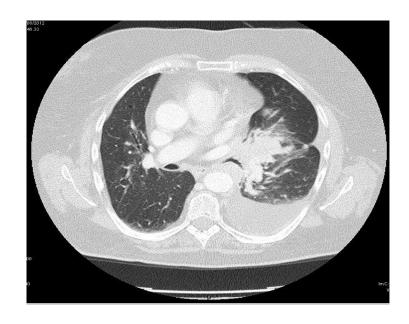
Caso Clinico n. 1 – A.P.

Beyond EGFR:

a 'molecular mosaic'

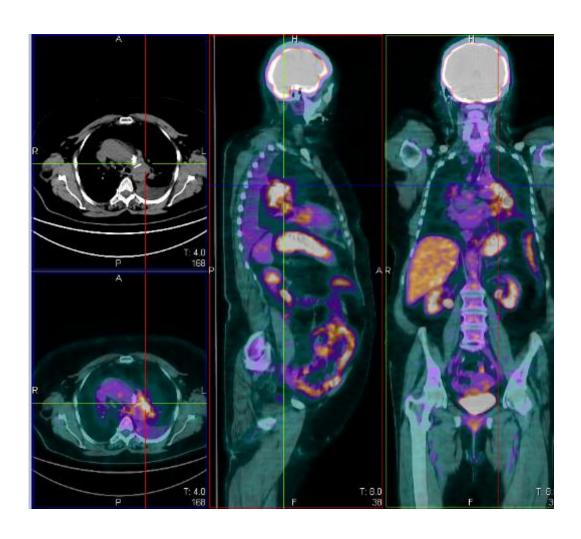
Sara Pilotto

Oncologia Medica, Scuola di Specializzazione in Oncologia, Università di Verona

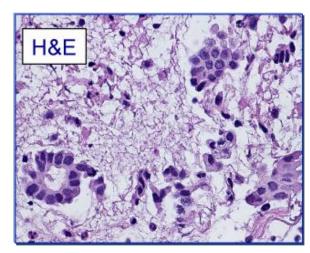

Direttore: Prof. G.P. Tortora

Policlinico 'G.B. Rossi', Azienda Ospedaliera Universitaria Integrata, Verona

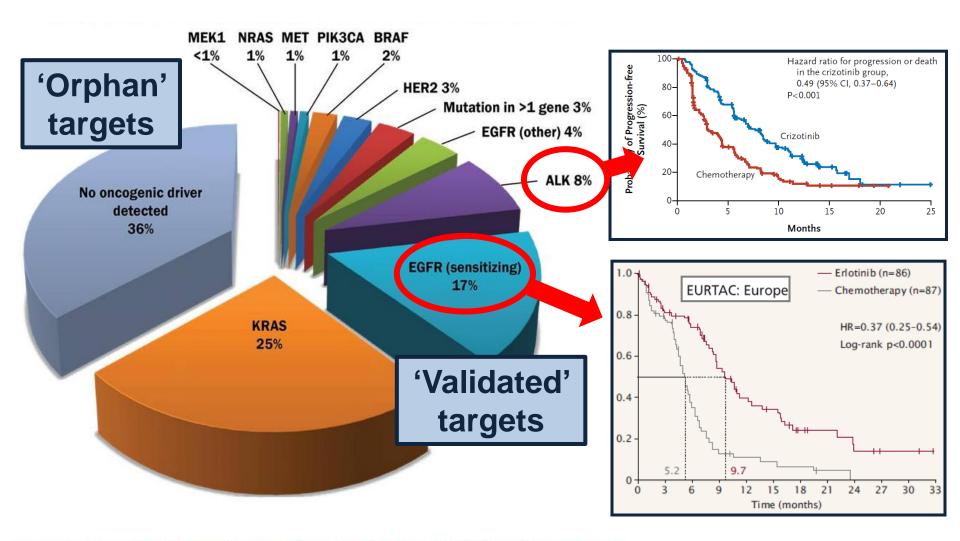
Negrar, 12 Marzo 2014


- Female patient, 77 year-old
- Never smoker
- Performance Status 2
- Comorbidities [CLINICALLY SIGNIFICANT]
 - √ ischemic-hypertensive cardiopathy [NYHA class II]
 - √ diabetes mellitus
 - √ gastro-oesophageal reflux
- Persistent cough and dyspnea for about 1 month

 <u>Total-body CT-scan:</u> large left hilar pulmonary mass with infiltration of the mediastinum and extension to both lobes; ipsilateral parenchymal and pleural nodules associated with pleural effusion; right pulmonary thromboembolism.



Total-body PET-CT: intense pathological uptake in correspondence of the known pulmonary lesions in the left hilar and para-hilar region, lingula and of the pleural thickening (parietal pleura before the arch back of the V coast and coast between XI and X)


 Bronchoscopy: hyperemia of the mucosa of the left main bronchus and enlargement of the spur between top and bottom, with no evidence of intraluminal disease; performed TBNA of the left main bronchus

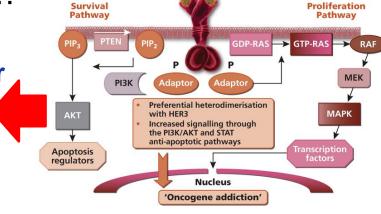
Histology: lung adenocarcinoma

 Sequencing analysis of EGFR exons 18 to 21: CTA-CAG point mutation in exon 21 [L861Q]

..going beyond 'adenocarcinoma'..

Lung Cancer Mutation Consortium: Incidence of Driver Mutations

Modified By Paul A. Bunn, MD at 2013 ASCO Annual Meeting


Clinical Relevance of the 'Oncogene Addiction'

In patients with solid malignancies in which a
 dominant mutation or gene amplification
 drives tumor growth, targeted therapies are
 highly effective but rarely curative...

cKit mutations in GIST

HER2 amplification in breast cancer

- EGFR mutation in NSCLC
- ALK traslocation in NSCLC

GENETICS

DEPENDENCY

PHARMACOLOGIC VULNERABILITY

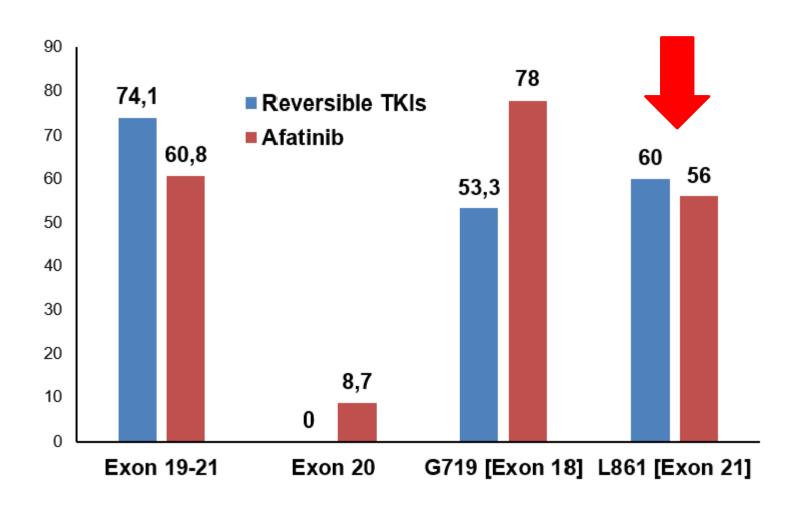
Medical Treatment for NSCLC – Molecular Selection [Validated] Biomolecular Predictors

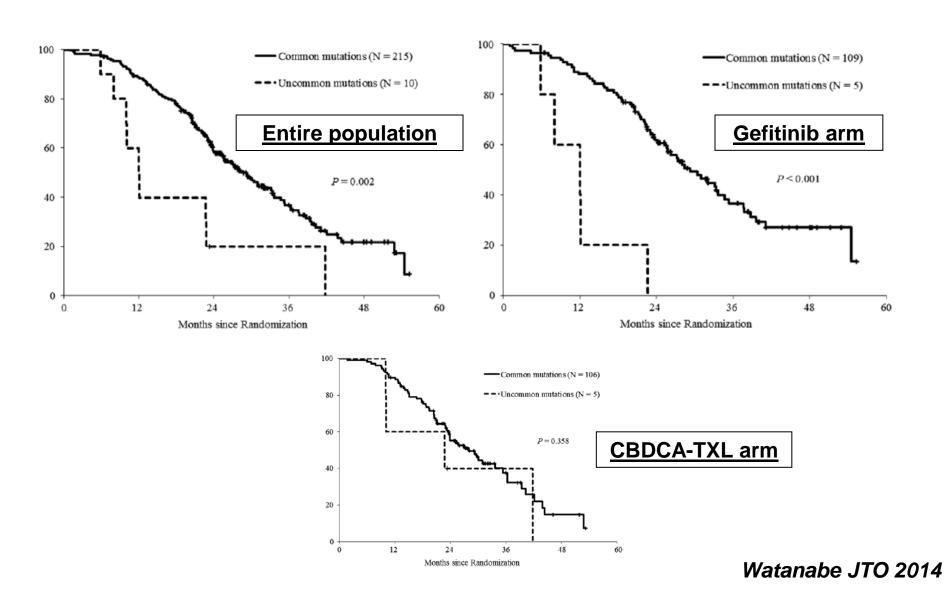
Evidences for Drugs' Registration:

- Randomized Studies:
 - EGFR Sensitizing Mutations
 - -Gefitinib [EMA, FDA?]
 - –Erlotinib [EMA]
- Early Phases Studies → Randomized Studies:
 - EML4-Alk Traslocation
 - -Crizotinib [EMA, FDA]

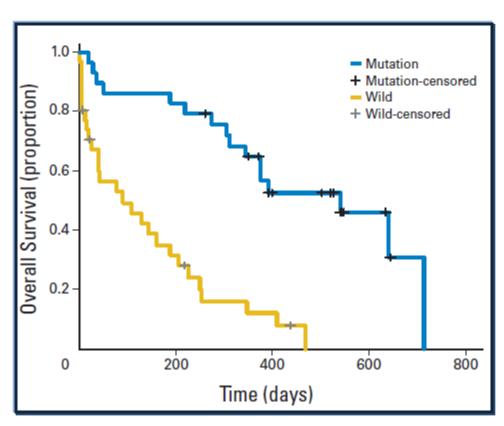
EGFR TKIs versus chemotherapy as first-line therapy in EGFR mutant

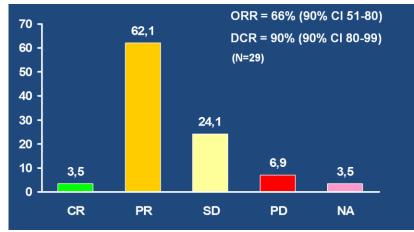
Study [ref.]	Patients treated with TKI n	PFS	ORR %	Overall survival
NEJ002 [12, 23]	114	10.8 months versus 5.4 months; HR 0.32 [95% Cl 0.24-0.44], p<0.001	74 versus 31; p<0.001	27.7 months versus 26.6 months; HR 0.89 [95% CI 0.63-1.24], p=0.483
WJT0G3405 [13, 25]	51 for PFS (stage IIIb/IV subgroup) 86 for overall survival	8.4 months versus 5.3 months; HR 0.33 [95% CI 0.21-0.54], p<0.0001 (stage IIIb/IV subgroup)	62 versus 32 ⁺⁺ ; p<0.0001	36 months versus 39 months; HR 1.19 (95% CI 0.771.8 p=0.443
IPASS ⁺ [8, 14]	132	9.5 months versus 6.3 months; HR 0.48 (95% CI 0.36–0.64), p<0.001	71 versus 47; p<0.001	21.6 months versus 21.9 months; HR 1.00 [95% CI 0.76-1.33], p=0.990]
EURTAC ⁶ [9, 19]	86	9.7 months versus 5.2 months; HR 0.37 (95% CI 0.25-0.54), p<0.0001	58 versus 15; p-value not reported	19.3 months versus 19.5 months; HR 1.04 (95% CI 0.65-1.68).
EURTAC ^f [9, 19]	86	10.4 months versus 5.4 months; HR 0.47 (95% CI 0.28-0.78), p=0.0030		p=0.87
LUX-Lung 3##	230	11.1 months versus 6.9 months; HR 0.58 [95% CI 0.43-0.78]; p=0.001	56 versus 23; p=0.001	28.1 months versus 28.2 months; HR 0.91 [95% CI 0.66-1.25],
LUX-Lung 3 ⁵ [15]	230	11.1 months versus 6.7 months; HR 0.49 (95% CI 0.37-0.65); p=0.001	69 versus 44; p=0.001	p=0.55 (yet immature
OPTIMAL [10, 11]	82	13.1 months versus 4.6 months; HR 0.16 [95% CI 0.10–0.26], p<0.0001	83 versus 36; p<0.0001	22.7 months versus 28.9 months; HR 1.04 [95% CI 0.69-1.58], p=0.69 (yet immature
LUX-Lung 6 ¹¹ [16]	242	11.0 months versus 5.6 months; HR 0.28 (95% CI 0.20-0.39), p<0.0001	67 versus 23; p<0.0001	Not reported; immatur
LUX-Lung 6 ⁵ [16]	242	13.7 months versus 5.6 months; HR 0.26 (95% CI 0.19-0.36), p<0.0001	74 versus 31; p-value not reported	


Mutations in the EGFR gene


..but what about uncommon EGFR alterations?

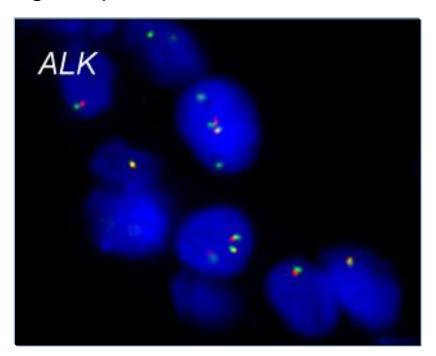
	Reversible EGFR-TKIs ¹			Afatinib ^{2,3,4}				
EGFR	N	RR (%)	PFS (months)	OS (months)	N	RR (%)	PFS (months)	OS (months
Exon 19-21	278	74.1	8.5	19.6	308 ⁴	60.8	13.6	-
Wild-type	272	16.5	2.0	10.4	42 ³	0	1.0	7.2
Exon 20 insertion	11	0	1.4	4.8	20 ²	8.7	2.7	9.4
G719	15	53.3	8.1	16.4	18 ²	78.0	13.8	26.9
L861	15	60.0	6.0	15.2	16 ²	56.0	8.2	16.9
Other	15	20.0	1.6	11.1	1	100	-	-


..but what about uncommon EGFR alterations?

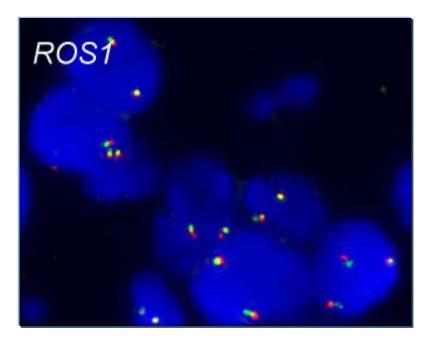


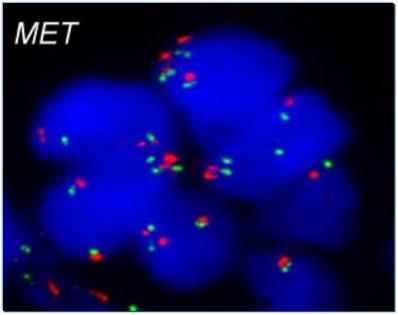
..but what about uncommon EGFR alterations?


..and what about Gefitinib in <u>EGFR mutant</u> patients unsuitable for chemotherapy?

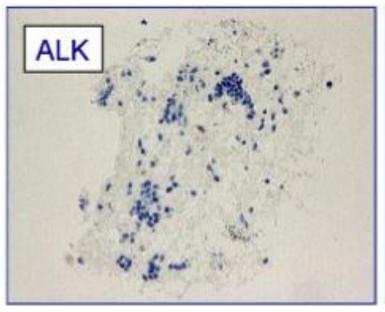


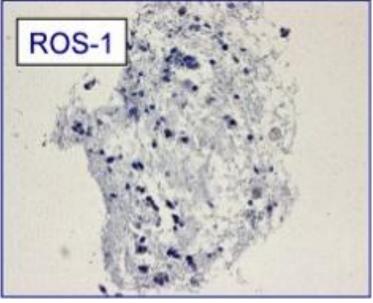
- September 2012: the patient started Gefitinib 250 mg/day
- November 2012: symptoms rapidly worsen in the 5th 7th week and the CT-scan showed progressive pleural disease and two brain metastasis (7 and 3 mm)

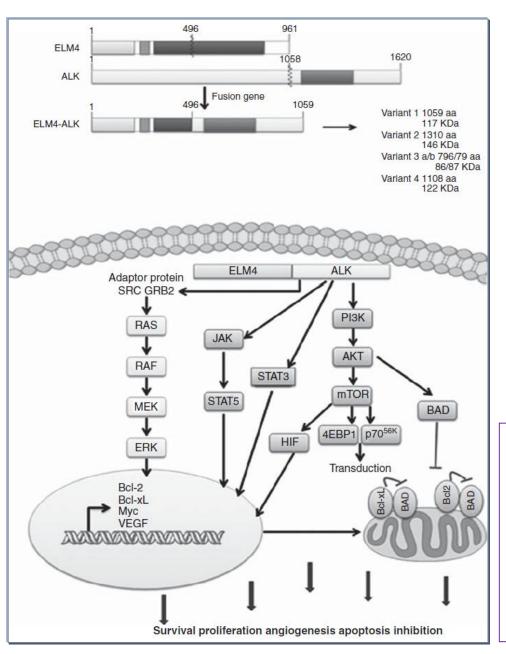




- November 2012: stereotactic radiosurgery on brain metastasis
- FISH analysis for ALK: did not show any rearrangement, but an increased gene copy number was observed in 61% of cancer cells, with 2.6 mean signals per cell



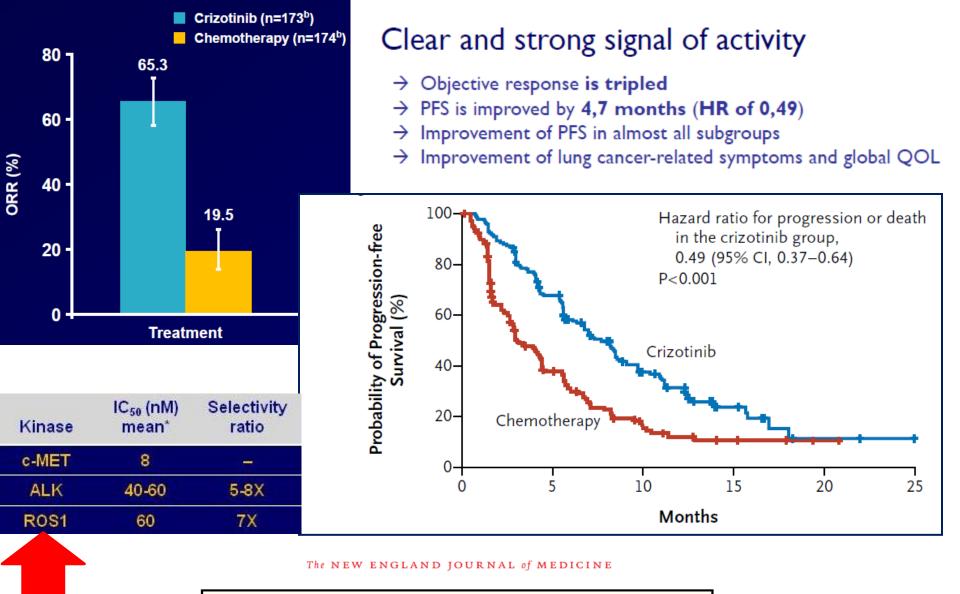

 FISH analysis for ROS1 and MET: did not show any rearrangement, but an increased gene copy number was observed in the 67% and 72% cancer cells, with 2.6 and 2.9 mean signals per cell, respectively



IHC analysis for ROS1 and ALK: did not show any expression.

PROFILing non-small-cell lung cancer patients for treatment with crizotinib according to anaplastic lymphoma kinase abnormalities: translating science into medicine

The ALK entity



- ❖ Median age of onset ~ 50 (20-80s)
- Mainly adenocarcinoma histology (signet-ring histology)
- Never/light smoking status
- Excess of
 - → hepatic metastases,
 - ightarrow pleural and pericardial effusions
 - → and probably brain metastasis (35% in this trial)
- Minimal overlap with other driver mutations
- Neutral prognosis vis à vis EGFR and ALK WT control groups

Medical Treatment for NSCLC – Molecular Selection [Validated] Biomolecular Predictors

Evidences for Drugs' Registration:

- Randomized Studies:
 - EGFR Sensitizing Mutations
 - –Gefitinib [EMA, FDA?]
 - –Erlotinib [EMA]
- Early Phases Studies → Randomized Studies:
 - EML4-Alk Traslocation
 - –Crizotinib [EMA, FDA]

Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer

ORIGINAL ARTICLE

- November 2012: the patient started <u>Crizotinib</u> 250 mg/BID/day
- After 4 weeks on crizotinib, a significant improvement of symptoms (cough and dyspnea) and Performance Status (0-1) was obtained. Treatment was well tolerated, except for a grade 1 skin rash and increase of transaminases
- July 2013: the last CT scan and clinical evaluation still confirm a stable disease after 8 months of crizotinib

 August 2013: the patient suddenly died for arrhythmia and heart failure


Conclusions (Issues for Q&A)

- Emerging data about the potential <u>predictive</u> (and prognostic) role of the <u>uncommon EGFR mutations</u>
 - Very modest efficacy of currently available TKIs <u>against T790M & exon 20 alterations</u>
 - Similar <u>efficacy in G719 and L861</u> mutations with reversible and irreversible TKIs
 - Waiting for new irreversible EGFR <u>mutant selective agents</u> (i.e. CO-1686)
- Who occurred <u>first in the pathogenesis</u>?
 - EGFR mutation as an 'escape' from ALK-driven addiction?
 - ALK (and ROS1/MET) high GCN as an 'escape' from EGFR-driven addiction?
 - Both clones resulting from distinct oncogenic events leading to the same phenotype?
- Is <u>tumour heterogeneity</u> a potential 'confounder?
- Which role as predictors of crizotinib for genetic <u>abnormalities 'other' than</u> <u>traslocations</u>?
 - Amplification
 - High GCN
 - In this case, what cut-offs?

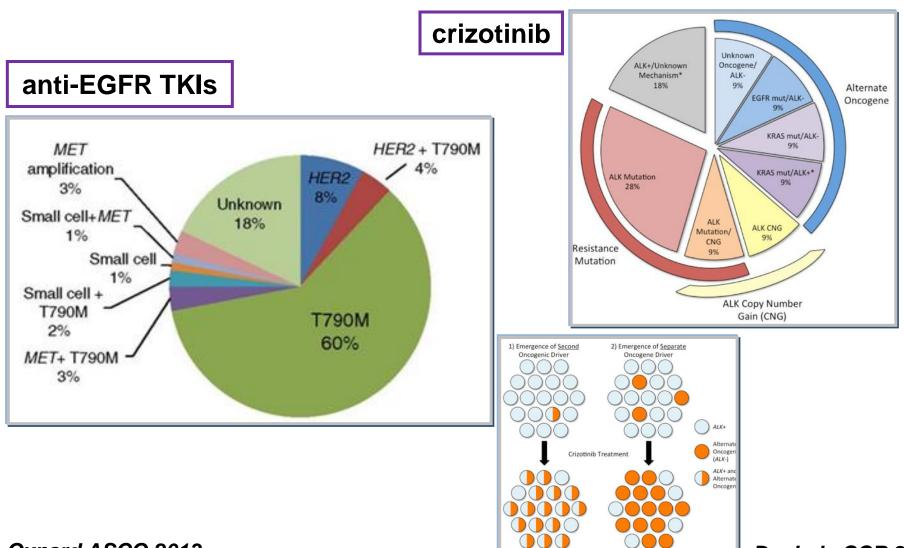
Conclusions (Issues for Q&A)

- Emerging data about the potential <u>predictive</u> (and prognostic) role of the <u>uncommon EGFR mutations</u>
 - Very modest efficacy of currently available TKIs <u>against T790M & exon 20 alterations</u>
 - Similar <u>efficacy in G719 and L861</u> mutations with reversible and irreversible TKIs
 - Waiting for new irreversible EGFR <u>mutant selective agents</u> (i.e. CO-1686)
- Who occurred <u>first in the pathogenesis</u>?
 - EGFR mutation as an 'escape' from ALK-driven addiction?
 - ALK (and ROS1/MET) high GCN as an 'escape' from EGFR-driven addiction?
 - Both clones resulting from distinct oncogenic events leading to the same phenotype?
- Is <u>tumour heterogeneity</u> a potential 'confounder?
- Which role as predictors of crizotinib for genetic <u>abnormalities 'other' than</u> <u>traslocations</u>?
 - Amplification
 - High GCN
 - In this case, what cut-offs?

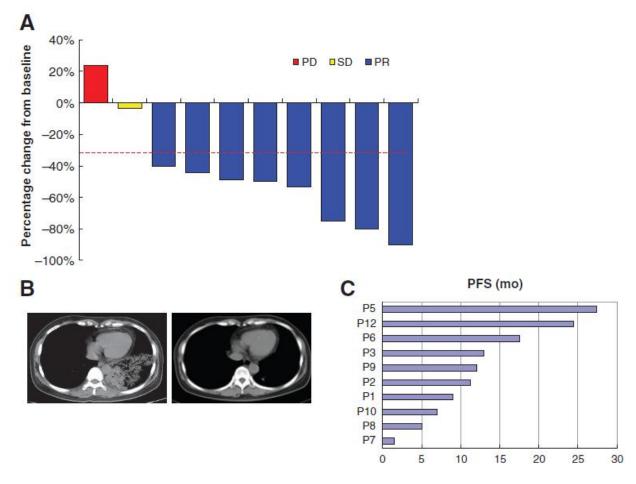
Results: biomarkers assessment (n=9911)

	EGFR	ALK	KRAS	BRAF	PI3K	HER2
EGFR	-					
ALK	3	-				
KRAS	5	10	-			
BRAF	2	1	6	-		
PI3K	16	1	33	1	-	
HER2				1		-

Supported by:

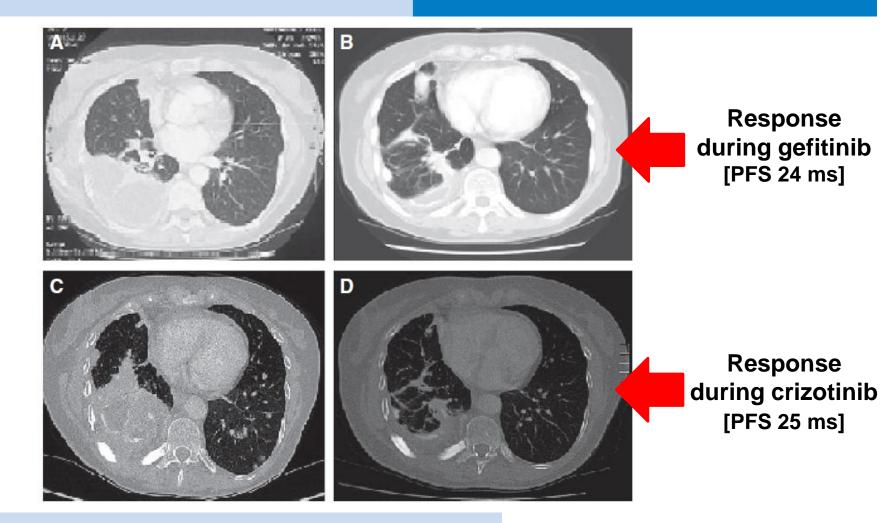


The Issue of resistence to TKIs


Oxnard ASCO 2013

Doebele CCR 2012

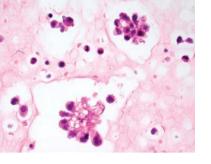
Predictive Biomarkers and Personalized Medicine

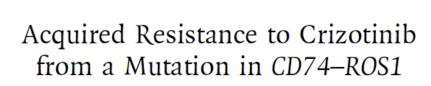

Lung Cancers with Concomitant *EGFR* Mutations and *ALK*Rearrangements: Diverse Responses to EGFR-TKI and Crizotinib in Relation to Diverse Receptors Phosphorylation

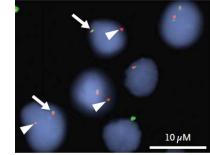
Jin-Ji Yang¹, Xu-Chao Zhang^{1,2}, Jian Su², Chong-Rui Xu¹, Qing Zhou¹, Hong-Xia Tian², Zhi Xie², Hua-Jun Chen¹, Yi-Sheng Huang¹, Ben-Yuan Jiang¹, Zhen Wang¹, Bin-Chao Wang¹, Xue-Ning Yang¹, Wen-Zhao Zhong¹, Qiang Nie¹, Ri-Qiang Liao¹, Tony S. Mok³, and Yi-Long Wu^{1,2}

Conclusions (Issues for Q&A)

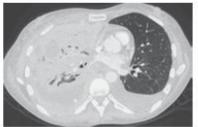
- Emerging data about the potential <u>predictive</u> (and prognostic) role of the <u>uncommon EGFR mutations</u>
 - Very modest efficacy of currently available TKIs <u>against T790M & exon 20 alterations</u>
 - Similar <u>efficacy in G719 and L861</u> mutations with reversible and irreversible TKIs
 - Waiting for new irreversible EGFR <u>mutant selective agents</u> (i.e. CO-1686)
- Who occurred <u>first in the pathogenesis</u>?
 - EGFR mutation as an 'escape' from ALK-driven addiction?
 - ALK (and ROS1/MET) high GCN as an 'escape' from EGFR-driven addiction?
 - Both clones resulting from distinct oncogenic events leading to the same phenotype?
- Is <u>tumour heterogeneity</u> a potential 'confounder?
- Which role as predictors of crizotinib for genetic <u>abnormalities 'other' than</u> <u>traslocations</u>?
 - Amplification
 - High GCN
 - In this case, what cut-offs?

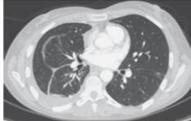


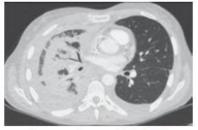

Long-Term Response to Gefitinib and Crizotinib in Lung Adenocarcinoma Harboring Both Epidermal Growth Factor Receptor Mutation and *EML4-ALK* Fusion Gene

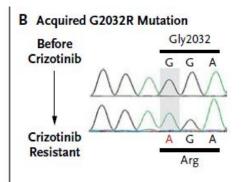

Conclusions (Issues for Q&A)

- Emerging data about the potential <u>predictive</u> (and prognostic) role of the <u>uncommon EGFR mutations</u>
 - Very modest efficacy of currently available TKIs <u>against T790M & exon 20 alterations</u>
 - Similar <u>efficacy in G719 and L861</u> mutations with reversible and irreversible TKIs
 - Waiting for new irreversible EGFR <u>mutant selective agents</u> (i.e. CO-1686)
- Who occurred <u>first in the pathogenesis</u>?
 - EGFR mutation as an 'escape' from ALK-driven addiction?
 - ALK (and ROS1/MET) high GCN as an 'escape' from EGFR-driven addiction?
 - Both clones resulting from distinct oncogenic events leading to the same phenotype?
- Is <u>tumour heterogeneity</u> a potential 'confounder?
- Which role as predictors of crizotinib for genetic <u>abnormalities 'other' than</u> <u>traslocations</u>?
 - Amplification
 - High GCN
 - In this case, what cut-offs?


BRIEF REPORT





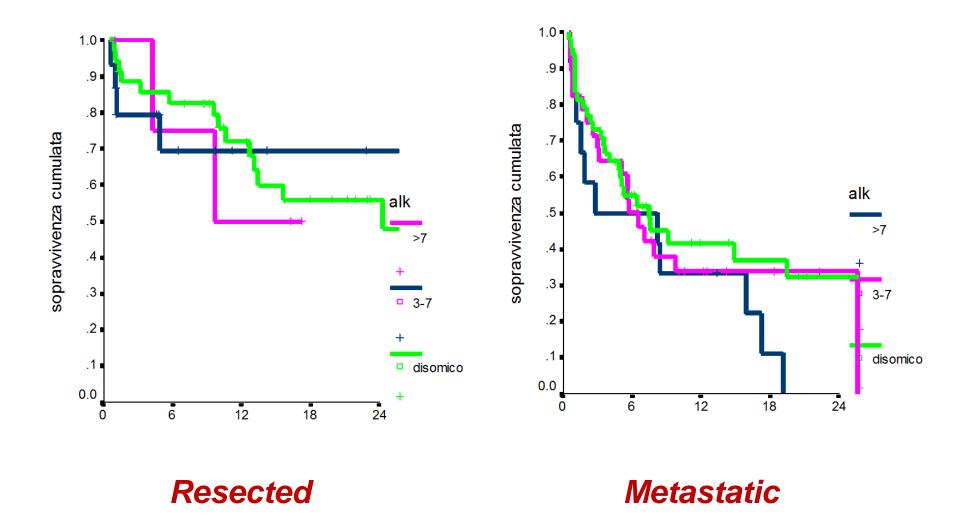


Pretreatment

Response to Crizotinib

Progression on Crizotinib

C Detection of the G2032R ROS1 Mutation in Autopsy Specimens



Autopsy Site	G2032R
Liver (normal)	20
Chest wall tumor	+
Right lung tumor no. 1	+
Right lung tumor no. 2	+
Malignant pleural effusion	+
Mediastinal lymph-node tumor	+
Left lung (microscopic disease)	+

Conclusions (Issues for Q&A)

- Emerging data about the potential <u>predictive</u> (and prognostic) role of the <u>uncommon EGFR mutations</u>
 - Very modest efficacy of currently available TKIs against T790M & exon 20 alterations
 - Similar <u>efficacy in G719 and L861</u> mutations with reversible and irreversible TKIs
 - Waiting for new irreversible EGFR <u>mutant selective agents</u> (i.e. CO-1686)
- Who occurred <u>first in the pathogenesis</u>?
 - EGFR mutation as an 'escape' from ALK-driven addiction?
 - ALK (and ROS1/MET) high GCN as an 'escape' from EGFR-driven addiction?
 - Both clones resulting from distinct oncogenic events leading to the same phenotype?
- Is <u>tumour heterogeneity</u> a potential 'confounder?
- Which role as predictors of crizotinib for genetic <u>abnormalities 'other' than</u> <u>traslocations</u>?
 - Amplification
 - High GCN
 - In this case, what cut-offs?

Prognostic value of *ALK* gene copy number (GCN) status for resected and metastatic Non-Small-Cell Lung Cancer (NSCLC): a retrospective analysis of 205 patients (pts)

